EXERCISE SHEET 5

- (E99) $SU_2(q) \cong SL_2(q)$ and, moreover, the action of $SU_2(q)$ on the set of points of the associated polar space is isomorphic to the action of $SL_2(q)$ on the set of points of $PG_1(q)$.
- (E100) Prove that if $\beta(x, y) = 0$, then there exists z with $\beta(x, z), \beta(y, z) \neq 0$.
- (E101) Prove that if $\beta(x, y) \neq 0$, then there exists z with $\beta(x, z) = \beta(y, z) = 0$.
- (E104) Complete the proof of Lemma 61 in lectures.
- (E105) Prove that $SU_4(2)$ is generated by transvections.
- (E107) Prove that $PSU_3(2) \cong E \rtimes Q$ where E is an elementary abelian group of order 9 and Q is a quaternion group of order 8.
- (E109) Prove that

$$|\mathrm{SO}_n^{\varepsilon}(q)| = |\mathrm{PO}_n^{\varepsilon}(q)| = \frac{1}{(2, q-1)} |\mathrm{O}_n^{\varepsilon}(q)|.$$

- (E111) $SO_n^{\varepsilon}(q)$ contains a transvection if and only if q is even.
- (E112) Prove that the definition of $\Omega_n^+(q)$ is well-defined when $\varepsilon = +$, by showing that in the natural action of G on \mathcal{U}_r , the set of maximal totally singular subspaces, any reflection acts as an odd permutation on \mathcal{U}_r .