
INTRODUCTION TO EXPANDERS

NICK GILL

The aim of this lecture is to give an introduction to expander graphs, ready for the next
lecture when we discuss the Bourgain-Gamburd construction of expanders using growth
results [BG08]. Nearly all of this material can be found in the (excellent) undergraduate
text by Davidoff, Sarnak, and Valette [DSV03]. Lubotzky also has a fine text in this area
[Lub94].

This write-up will be a little more brief than previous ones; I’m a little pressed for
time...

1. Definitions

Let X = (V,E) be a graph; V is the set of vertices, and E is the set of edges. For us a
graph always satisfies the following properties:

• |V | and |E| are finite;
• edges are undirected;
• there are no loops;
• the graph is simple, i.e. there is at most one edge between any two vertices.

The graph is called k-regular (for some k ∈ Z
+) if every vertex has exactly k neighbours.

For F a subset of V define δF to be the set of edges connecting F to V \F . The
expanding or isoperimetric constant of X is defined to be

h(X) = min

{

|δF |

|F |
| F ⊂ V, |F | ≤

1

2
|V |

}

.

We can think of h(X) as a measure of how quickly information can propagate through
a network. The value of h(X) gives us an idea of “the worst possible bottle-neck.”

We are now able to define what we mean by a family of expanders: Fix k ≥ 2. Let
(Xm)m∈Z+ = (Vm, Em) be a family of k-regular graphs. Then (Xm)m∈Z+ is a family of

expanders if

• |V |m → ∞ as m → ∞;
• there exists ǫ > 0 such that h(Xm) > ǫ for all m ≥ 1.

2. An alternative formulation

We can define a family of expanders in terms of the adjacency matrix of X; this often
turns out to be an easier thing to get one’s hands on. Throughout this section we require
that X is k-regular.

Let n = |V | and number the vertices of V from 1 to n. We define A to be the adjacency

matrix of X: A is an n × n matrix with rows and columns indexed by vertices of X such
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that

A = (Aij) =

{

1, eij ∈ E;
0, eij 6∈ E.

Observe that A is an real n × n symmetric matrix. Basic linear algebra tells us that A
has n real eigenvalues which we write as

λ0 ≥ λ1 ≥ · · · ≥ λn−1.

(Note that we are allowing the possibility of repeats.) The list λ0, . . . , λn is known as the
spectrum of X.

We record a series of basic results concerning the spectrum of X; a proof can be found
in [DSV03, §1].

Proposition 2.1. (a) λ0 = k;

(b) |λi| ≤ k for 1 ≤ i ≤ n − 1;
(c) λ0 has multiplicity 1 if and only if X is connected;

(d) Suppose X is connected. Then

• X is bipartite if and only if λn−1 = −k;

• λn−2 > −k.

Now observe that for X finite, connected, and k-regular we have that

k = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λn−2 ≥ λn−1 ≥ −k.

An eigenvalue λ such that |λ| = k is called trivial; Prop. 2.1 implies that there are either
one or two trivial eigenvalues in the spectrum (remember that we are allowing for repeats).
We define λ0 − λ1 = k − λ1 to be the spectral gap of X.

Now a basic result from this area gives bounds on the expanding constant in terms of
the spectral gap. This result does not use any very highfalutin mathematics, but it is
highly ingenious (see [DSV03, Thm. 1.2.3]).

Theorem 1. k−λ1

2
≤ h(X) ≤

√

2k(k − λ1).

Thm. 1 implies an alternative definition of an expander graph: Let (Xm)m∈Z+ =
(Vm, Em) be a family of k-regular graphs. Then (Xm)m∈Z+ is a family of expanders if

• |V |m → ∞ as m → ∞;
• there exists ǫ > 0 such that (k − λ1)(Xm) > ǫ for all m ≥ 1.

Note that the bigger the spectral gap, the better the “quality” of the expander. It turns
out that we can optimise this quality, at which point the family of expanders is known as
a Ramanujan family of graphs. More details in [DSV03, §1].

3. Girth

Let X be a connected graph throughout this section. We define the girth of X, g(X),
to be the length of the shortest circuit in X. If X has no circuits (i.e. X is a tree), then
write g(X) = ∞.

It is interesting to think how one might calculate the girth of a graph X from its
adjacency matrix A. In general one can’t just read the girth of the graph off A, however
we note an important related quantity: let Wl be the number of walks of length l starting
at a vertex i and ending at i. It is easy to see that Wl = (Al)ii.
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Write χ(X) for the chromatic number of X. This is the smallest number of colours that
we can use to colour V so that no adjacent vertices have the same colour.

We mention a long-standing problem in graph theory: given positive integers C and D,
construct X so that

(3.1) χ(X) > C, and g(X) > D.

Note that k-regular graphs satisfy the former property for k ≥ C − 1. However it is
unclear, a priori, that a graph satisfying both the conditions of (3.1) should exist; Erdös
solved this problem by using a probabilistic method to show that such graphs do indeed
exist. We will use a similar result specific to Cayley graphs in the next lecture.

4. Cayley graphs

For A a finite subset of a finite group G, define the Cayley graph C(G,A) = (V,E) of G
where

• V is equal to the set of elements of G;
• there is an edge from a vertex x ∈ G to a vertex y ∈ G if and only if y = xa for

some a ∈ A.

Note that, strictly speaking, the definition of a Cayley graph just given does not result
in a graph in the sense we have used in this lecture (for instance the Cayley graph could
be directed, or have loops). We will not need this level of generality; indeed the follow-
ing result gives conditions under which a Cayley graph is a graph in the sense that we
understand it (along with several other useful facts).

Proposition 4.1. Write k = |A|.

(a) C(G,A) is simple and k-regular.

(b) C(G,A) has no loop if and only if 1 ∈ A.

(c) C(G,A) is undirected if and only if A = A−1.

(d) C(G,A) is connected if and only if 〈A〉 = G.

(e) C(G,A) is vertex-transitive.

Proof. Easy-peasy! �

5. The question at hand

We end with the question addressed by Bourgain and Gamburd in their paper [BG08].
Take A a finite set in SL2(Z). Define Ap a subset of SL2(Z/pZ) to be the set we obtain
by reducing all entries in elements of A modulo p. Here’s the big question:

Is C(S2(Z/pZ), Ap) a family of expanders?

Theorem 2. If |SL2(Z) : A| < ∞, then the answer is “yes”.

The given theorem (which is a consequence of work of Selberg; see the introduction
of [BG08], as well as [Lub94, Thm. 4.3.2]) gives a partial answer to the given question.
Bourgain and Gamburd’s achievement is to give a precise characterization of those sets
A for which the answer is “yes”. Their proof is particularly impressive because it also
constitutes the first time that expanders have been constructed using results concerning
growth in groups.
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