Talk at the YSTW 2016 in Kopenhagen

From 13th to 17th June 2016 the Young Set Theory Workshop will be held in Kopenhagen. For more information see the webpage of the YSTW 2016. The title of my talk will be the following:

A Journey Through the World of Mice and Games – Projective and Beyond.

Abstract: This talk will be an introduction to inner model theory the at the
level of the projective hierarchy and the $L(\mathbb{R})$-hierarchy. It will
focus on results connecting inner model theory to the determinacy of
certain games.

Mice are sufficiently iterable models of set theory. Martin and Steel
showed in 1989 that the existence of finitely many Woodin cardinals
with a measurable cardinal above them implies that projective
determinacy holds. Neeman and Woodin proved a level-by-level
connection between mice and projective determinacy. They showed that
boldface $\boldsymbol\Pi^1_{n+1}$ determinacy is equivalent to the fact that the
mouse $M_n^\#(x)$ exists and is $\omega_1$-iterable for all reals $x$.

Following this, we will consider pointclasses in the $L(\mathbb{R})$-hierarchy
and show that determinacy for them implies the existence and
$\omega_1$-iterability of certain hybrid mice with finitely many
Woodin cardinals, which we call $M_k^{\Sigma, \#}$. These hybrid mice
are like ordinary mice, but equipped with an iteration strategy for a
mouse they are containing, which enables them to capture certain sets
of reals. We will discuss what it means for a mouse to capture a set
of reals and outline why hybrid mice fulfill this task.


One thought on “Talk at the YSTW 2016 in Kopenhagen

Leave a Reply

Your email address will not be published. Required fields are marked *