Monthly Archives: March 2013

Tennenbaum’s Theorem

Gödel’s Incompleteness Theorems established two fundamental types of incompleteness phenomena in first-order arithmetic (and stronger theories). The First Incompleteness Theorem showed that no recursive axiomatization extending ${\rm PA}$ can decide all properties of natural numbers and the Second Incompleteness Theorem … Continue reading

Posted in logic.2013 | Leave a comment

Order amidst the chaos: exploring Julia sets and the Mandelbrot set

This is a project with Mariama Wilson.

Posted in student projects | Leave a comment

The Second Incompleteness Theorem

There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable. There is another theory … Continue reading

Posted in logic.2013 | Leave a comment

The First Incompleteness Theorem

Some people are always critical of vague statements. I tend rather to be critical of precise statements; they are the only ones which can correctly be labeled ‘wrong’. –Raymond Smullyan At the dawn of the $20^{\text{th}}$-century formal mathematics flourished. In … Continue reading

Posted in logic.2013 | Leave a comment